Performance comparison on secure processors using a
temporized page encryption technique

Osvaldo Espinosa Sosa, Luis Villa Vargas and Oscar Camacho Nieto

Center for Computing Research CIC-IPN, Av. Juan de Dios Batiz, esq. con Miguel Othén de
Mendizéabal, México, D.F., 07738. México
espinosa@cic.ipn.mx , lvilla@cic.ipn.mx, oscarc@cic.ipn.mx
Phone: +(55)57296000 ext. 56519

Abstract. Secure processors have been proposed as the solution for problems ip
computer security such as hardware attacks, viruses and intruders as well as pi-
racy of software. Researchers have proposed several techniques based on en-
cryption of memory contents where the processor is the only capable entity of
decrypt that information before use it. It is evident that encryption and decryp-
tion processes increase security levels on computer systems but there is a real
penalty on processor performance due to the higher memory access latency.
This paper shows the effect on performance of secure processors using tempo-
rized techniques for memory page encryption. The main objective is to show
performance loses when secure processors are compared with baseline architec-
tures (insecure processors). Performance loses are well justified with the major
security level offered with the inclusion of encryption and decryption system.

Two cases are evaluated: the first one using Direct Encryption mode and the
second one using Counter Mode Encryption.

1 Introduction.

Nowadays, new attacks to computer systems constantly appears and they are pro-
duced by malicious software that take advantage of operating systems vulnerabilities
and hardware weaknesses in computing systems. Duplication in an illegal way of
software (piracy) [1] is also a very important problem; causing millionaire loses to
software industry. To reduce these problems, several techniques have appeared_at
microprocessor level [3]. In these techniques the microprocessor is the only entity
authorized to access to information, any other hardware component is considered
vulnerable to the attacks due to the fact that anybody can be monitoring the.infonna-
tion flowing through the buses [4]. Programs are then stored in memory in an en-
crypted form and only can be decrypted on-chip, taking into account that the encryp-
tion engine is usually placed between level two of cache and main memory.

This paper shows the effect in the performance of a superscalar processor due to the
inclusion of an encryption and decryption system including the capacity to encrypt

© A. Argiielles, J. L. Oropeza, O. Camacho, O. Espinosa (Eds.)
Computer Engineering.

Research in Computing Science 30, 2007, pp. 97 - 105



98 O. Espinosa, L. Villa and O. Camacho

pages of main memory at regular intervals of time, changing on every encrypted page
the key to be utilized in order to raise the security level. It is clear that this encryption
system will add more latency to main memory access and this will affect the overall
processor performance. It is important to find a well balanced configuration between
memory page size and the period of time used by page encryption in a manner that
performance will not be affected severely and it can offer an adequate security level.
This work contains a methodology used to evaluate the proposal (temporized page
encryption) which uses an execution-driven simulator to obtain detailed statistics of
realized experiments, results obtained are included also and finally we have conclu-

sions and bibliographic references.

2 Encryption of memory in secure processors.

On previous work it has been proposed to encrypt data contained in main memory
to offer a good security level against attacks [2]. The encryption and decryption
system is usually inserted between level two of cache memory and main memory
due to it is the place where processor performance is degraded in a minor quantity
and because of the fact that levels one and two of cache memory normally reside on
chip, it is used also as a bus interface with an insecure external world. When the
processor performs a read operation to main memory, the data obtained must be
decrypted to be used by the processor; likewise, when a write operation to main

memory is performed the data must be encrypted before.

There are two approaches to do this: the first one is called Direct Encryption
Mode where the encryption/decryption engine is placed serially between main mem-
ory and the second cache level. This mode encrypts and decrypts data moving be-
tween level two of cache and main memory. This encryption mode has the character-
istic of exhibit the whole latency of encryption system and then an access to main
memory increments its normal latency adding the encryption engine latency result-
ing in a higher total latency. The second approach is called Counter Mode. Unlike
Direct Encryption system it does not need to wait until data arrives from memory (it
does not work serially), instead of that, the system encrypts already well-known
information at the moment of the access to memory such as memory address and/or
the value of a counter, producing a new data called data pad which can be used for
encryption or decryption. The data pad is calculated in parallel with memory access
and the encryption/decryption latency is hidden with the memory access latency.
When data read from cache (or ready to be written) and data generated for encryp-
tion engine (data pad) are available then both are XOR’ed to produce a new data
decrypted to be read (or encrypted to be written). Latencies showed by Direct En-

cryption and Counter Mode Encryption are depicted on figure 1.

We can notice the minor total latency of Counter Encryption Mode. For encryp-
tion/decryption is usually utilized the AES algorithm (Advanced Encryption Stan-
dard) which is an algorithm of fixed parameters. The AES requires as input a data



Performance comparison on secure processors using a temporized... 99

block of 16 bytes. In order to encrypt a cache memory line of 64 bytes, four AES
blocks are required as shown in figure 2.

l;MEMORY LATENCY ' ENCRYPTION LATENCY I

DIRECT ENCRYPTION MODE

MEMORY LATENCY
—]

ENCRYPTION LATENCY  TME

]
1

COUNTER MODE

Fig. 1 Two approaches for encryption/decryption

The encryption or decryption process can use always the same key, which repre-

sents vulnerability due to the possibility that the algorithm can be broken by an ex-
pert intruder.

CACHE MEMORY
1648
I I e |
ENCRYPTED | |aes | |AEs| [aES | |AES
. PAGES T T T
6B  16B T 16B 16B
T64B ,
1648
MAIN MEMORY

Fig. 2 Encryption and decryption circuit detail.



100 O. Espinosa, L. Villa and O. Camacho

Other option is to change the key after certain number of encryptions and decryp-
tions, however when the key is replaced the main memory must be re-encrypted
causing that system could be stopped a large interval of time (in the order of sec-
onds) in a system working at frequencies in the order of Ghz. To improve security in
a computer system without important performance degradation we propose a system
where periodically keys are replaced using a pull of keys, even more, we can use
different keys for each memory page, as we are going to explain in the next section.

3 Proposed architecture.

Our encryption system is shown in figure 3. The main memory is divided in
pages of fixed size (e.g. 4KB). There is a timer that activates the mechanism for key
replacing periodically at regular intervals of time. Keys are generated in a random
form. Every time this mechanism is activated, a memory page is decrypted using the
old key and re-encrypted using the new key. Afterwards, the encrypted information

is sent back to main memory.

CPU

i
CACHE L1

1

CACHE L2 TIMER

—

ENCRYPT/DECRYPT

MAIN MEMORY

KEYS

3

Fig. 3 Proposed architecture.

At the end of the period, a new page of main memory will be selected for re-
encryption following a Round Robin scheme. The new encryption process will use a
new key (and a new one for every page) to offer a higher level of security in com-
parison with proposals which use only one key for whole memory.

Using this new page encryption model the security level increases without impor-
tant performance degradation. In order to know what memory pages are active on
memory, the processor has a special group of page registers working together with
operating system which is the responsible of resource management (memory in this
case). The processor includes a set of special registers to store the old key for de-
cryption (it comes from main memory) and other one to store the new key that will



Performance comparison on secure processors using a temporized... 101

be used for page re-encryption before are sent back to main memory. It is important
to notice the following fact: when a page is re-encrypted, information pass through

the decryption circuit and data is sent back directly to main memory without affect-
ing the cache contents.

4 Methodology.

We have evaluated our models using the simplescalar 3.0 simulator tool set which
performs a very detailed simulation of a superescalar processor with out of order
execution [5]. The simulator was configured as an Alpha 21264 because this archi-
tecture has been considered the best superscalar processor at its time of appearance.
This processor contains two level 1 cache memories (Instructions and data) of 64 KB
2-way associative with 64 byte blocks. The second level of cache is unified with size
of 1 MB being 8-way associative with 64 byte block. The SPEC CPU 2000 was used
as a benchmark set, which is composed of twelve applications fixed point and four-
teen floating point programs. In this work the performance is monitored whenever
we chang.e the page size or the period of time for page re-encryptions. Five hundred
Tnillions? Instructions were simulated for each program skipping the first 1 X 10°
Instructions with the aim of eliminate initialization effects on statistics. Results are
shown in terms of IPC average for the 26 SPEC CPU programs.

S Evaluation.

As we can see on figure 4, our reference is the bar labelled as baseline, which
corresponds to an insecure processor and corresponds to the maximum performance
attainable. We compare the baseline with Direct Encryption Mode (XOM) using
pages of 4 KB, encrypting every 1,000,000 cycles and 100,000 cycles (XOM+1e6
and XOM+1eS respectively). We can notice that performance is diminished signifi-
cantly with the inclusion of encryption engine. Direct Encryption reduces perform-
ance to 90,84% in average respect to the baseline but including page encryption every
1,000,000 cycles performance degradation is minimal (descends to 90.23%) . If page
encryption is now realized every 100,000 cycles the performance degradation is more
important (84.73%). It is clear that increasing security (reducing re-encryption’s pe-
riod) performance will be reduced in a major form. Figure 5 shows how the page size
impacts on performance. We consider pages of 4 KB, 8 KB and 16 KB (labelled
XOM+4K, XOM+8K and XOM+16K respectively) and there is a comparison with
baseline and Direct Encryption Mode (XOM). It is evident that increasing page size,
performance decreases. In this case, page re-encryptions take place every 100,000
cycles. With pages of 4 KB the performance is 90.23% respect to the baseline and
85.62% for pages of 8 KB. The performance is even worse with 16 KB pages, where
it is reduced until 69.84%. Figure 6 shows results with a period of 1,000,000 cycles
between page re-encryptions. We can see that with a higher period the latency of
encryption system is better hidden. As it is depicted, page size could be bigger a}nd
the system is less sensitive to the latency inserted by the encryption engine, having



102 O. Espinosa, L. Villa and O. Camacho

performances of 90.65% on average respect to the baseline with 8 KB pages and
88.04% with 16 KB pages.

Performance comparison

105,00% ’-109:00';‘,
100,00% +- —— ——
95,00% 90,84% 90,23% """~
90.00% - S Ce— iz 84,73%—‘
85,00% | [

80,00% +—
75,00% -+

IPC average

Fig. 4 Direct Encryption Mode with 4 KB pages and different periods.

Performance comparison

120,00% Fo5555% :
100,00% - 790,84% 90,23% g5 Go%——
g’ 80,00% + 11— ]—M-—6984%
g 60,00% —

g 40,00% - =] =] = ]
20,00% - - — — _ _

0,00% . ; :

J +
o +0\‘\ st‘{. \‘\3"{- 20
Qﬁq’ Q) O Oé\
¥ + «

Fig. 5 Direct Encryption Mode with page encryption every 100,000 cycles.

On the other hand, figure 7 shows results for the Counter Mode Encryption sys-
tem, the insecure processor is labelled baseline and represents the maximum perform-
ance attainable by the system. The Counter Mode only encryption system corre-
sponds to the bar CM, and when we include page encryption every 1,000,000 and
100,000 cycles (labelled CM+1e6 and CM+1e5 respectively). Is evident that per-
formance loses are lower than Direct Encryption Mode, in fact performance reduc-
tions for CM+1e5 is less than 5%. Figure 8 depicts the case of page re-encryption
every 100,000 cycles, showing that we can select page sizes of 8 KB having the per-
formance loss to approximately 10%, better than Direct Encryption case.



Performance comparison on secure processors using a temporized... 103

Performance comparison

102,00%

100,00% ——
98,00% 4.

96,00% {—

94,00% 93,00%
—

92,00% +—| _ ]

2B qeg T e L e
8251 9191%

90,00% {- - _— 5 ]

IPC average

88.04%
88,00% {—. —_—

86,00% 4— —

84.00% {— N

82,00%

Baseline XOM XOM+4K  XOM+BK XOM+18K XOM+32K

Fig. 6 Direct Encryption Mode with page encryption every 1,000,000 cycles.

Figure 9 corresponds to the case of page encryption every 1,000,000 cycles. Re-
ducing the period of time between re-encryptions the system is less sensitive to an

encryption process. We can notice that page size of 32 KB represents a performance
loss of less than 5%.

Comparison of performance loses give us an idea that Counter mode is better in
terms of performance instead of Direct Encryption which have better levels of secu-

rity (by the fact that Counter Mode exhibits part of information through the buses for
example).

Performance comparison

101,00%
100,00%
100.00% |- ... 8983%

§ T - 99,35% — — = ——— ———em

99.00% {- -

98,00% {——

97,00% {. - S
96,00% {——
95.00% }-- S

IPC a\)erage

94,00% §—

92,00%

Baseline ™ CM+106 CM+1065

Fig. 7 Counter Mode Encryption with 4 KB pages and different periods.



104 O. Espinosa, L. Villa and O. Camacho

Performance comparison
120,00%
100.00% 99,89%
100.00% f—- 95.00%
it 89,56%

® 79,35%

8, 80.00% |- —

i

2 eooxf- | |- |- |— . -—

CJ

(8]

0. 40.00% - == = 1
20,00% = - - -
0,00%

Baseine cM CM+4KB CM+8KB  CM+16KB

Fig. 8 Counter Mode Encryption with page encryption every 100,000 cycles.

Performance comparison

101.00%
100.00%  go g3y,
100,00% 1 — ST

— 98,84%

97,79%

__85.68%

IPC average
§
i

$3,00%
Baseline CM CM+4KB CM+8KB CM+16KB CM+32KB

Fig. 9 Counter Mode Encryption with page encryption every 1,000,000 cycles.

6 Conclusions.

As it is studied in this work, to include an encryption system reduces processor per-
formance in an important manner, if additionally we insert the temporized page en-
cryption technique we are adding additional loss. These performance loses are well
justified in terms of increased security. We can eliminate 10% of performance in
order to gain a higher level of security. Evidently, choosing an adequate period for
page re-encryption and the page size could increase even more the security of the
system. Direct Encryption is better in terms of security but Counter mode is better for

system performance.



Performance comparison on secure processors using a temporized... 105

References.

Yang,Zhang,Gao. Fast secure processor for inhibiting software piracy and tampering.
Proceedings of the 36™ Intemnational Symposium on Microarchitecture MICRO 36-2003.

Ruby B. Lee, Peter C. S. Kwan. Architecture for

protecting critical secrets in microproc-
essors. Proceedings of the 32nd Annual International Symposium on Computer Architec-
ture 2005.

T.Kgil, L.Falk and T. Mudge. ChipLock: support for secure microarchitecures. Workshop
on architectural support for security and anti-virus, 2004,

Chenyu Yan, Brian Rogers et. Al. Improving cost, performance and security of memory

encryption and authentication. International Symposium on computer architecture ISCA
2006.

Burger,Dough. The simplescalar toolset, version 3.0 Computer Architecture News, 25 (3),
pp. 13-25, June, 1997,






